Lecture 11: Properties of Expanders and Graph Products

Notation: Recall

Let G be an undirected d-regular non-bipartite graph

- Let A be the adjacency matrix of G
- Let $M=\frac{1}{d} \cdot A$ be the normalized adjacency matrix of G
- Let $1=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}>-1$ be the eigenvalues of M
- Let $\lambda(G)=\max _{1 \leqslant i \leqslant n}\left|\lambda_{i}\right|$
- Let J be a matrix of all $1 s$
- Now,

$$
\left\|M-\frac{1}{n} J\right\|=\max _{x:\|x\|=1}\left\|\left(M-\frac{1}{n} J\right) x\right\|=\lambda(G)
$$

Expander Mixing Lemma

Lemma (Expander Mixing Lemma)

Let $S, T \subset V$ be two disjoint subset of vertices. Then,

$$
\left|E(S, T)-\frac{d}{|V|} \cdot\right| S|\cdot| T|\mid \leqslant \lambda(G) \cdot d \cdot \sqrt{|S| \cdot|T|}
$$

- $E(S, T)=d \cdot 1_{S}^{\top} M 1_{T}$
- $|S| \cdot|T|=1_{S}^{\top} J 1_{T}$
- Now, we have:

$$
\begin{aligned}
\left|E(S, T)-\frac{d}{|V|} \cdot\right| S|\cdot| T|\mid & =d \cdot\left|1_{S}^{\top} M 1_{T}-\frac{1}{|V|} 1_{S}^{\top} J 1_{T}\right| \\
& =d \cdot\left|1_{S}^{\top}\left(M-\frac{1}{|V|} J\right) 1_{T}\right| \\
& \leqslant d\left\|1_{S}\right\| \cdot\left\|\left.M-\frac{1}{|V|} J \right\rvert\,\right\| \cdot\left\|1_{T}\right\| \\
& =d \sqrt{|S|} \cdot \lambda(G): \sqrt{|T|}
\end{aligned}
$$

Random Walks

A t-step random walk starting with distribution p is given by $M^{t} p$
Lemma (Mixing Time of Random Walks in Expanders)
Let p is be any starting probability distribution. Then,

$$
\left\|u-M^{t} p\right\|_{1} \leqslant \sqrt{V}(\lambda(G))^{t}
$$

$$
\begin{aligned}
\left\|u-M^{t} p\right\|_{1} & \leqslant \sqrt{|V|} \cdot\left\|u-M^{t} p\right\|=\sqrt{|V|} \cdot\left\|\frac{1}{|V|} J p-M^{t} p\right\| \\
& \leqslant \sqrt{|V|}(\lambda(G))^{t}\|p\| \\
& \leqslant \sqrt{|V|}(\lambda(G))^{t}
\end{aligned}
$$

Diameter of Expanders

Think: Use previous result to prove a logarithmic bound on the diameter of an expander graph

Graph Products

Notation about Graphs:

- Given two regular undirected graphs G and H we will study different ways to combine them
- We will assume that every edge incident on a vertex v is named uniquely
- So, any edge (u, v) will receive two names i and j, where i corresponds to the vertex u and j corresponds to the vertex v
- This naming of edges can be arbitrary

Replacement Product

- Let G be a "large" D-regular graph on N vertices
- Let H be a "small" d-regular graph on D vertices
- Assume that in G, for any vertex v, the edges incident on v have an ordering
- Vertex set of $G \mathbb{C} H$ is $V(G) \times V(H)$
- (u, i) is connected to (v, j) if and only if:
- $u=v$ and $(i, j) \in E(H)$, or
- $u \neq v$, the edge $e=(u, v) \in E(G)$, and e is the i-th neighbor of u and j-th neighbor of v
- The graph $G \mathbb{C} H$ has $N D$ vertices and is $(d+1)$-regular

Theorem (Expansion of Replacement Product Graph)

Let G be an (N, D, Λ) graph and H be a (D, d, λ) graph. Then, $G ®(H$ is an $(N D, d+1, g(\Lambda, \lambda, d))$ graph, where:

$$
g(\Lambda, \lambda, d) \leqslant(p+(1-p) f(\Lambda, \lambda))^{1 / 3}
$$

and $p=d^{2} /(d+1)^{3}$ and $f(\Lambda, \lambda) \leqslant \Lambda+\lambda+\lambda^{2}$.

Zig-Zag Product

- (u, i) is connected to (v, j) if there exists k and ℓ such that (u, i) is connected to (u, k) is connected to (v, ℓ) is connected to (v, j) in $G ® H$

Theorem (Expansion of Replacement Product Graph)

Let G be an (N, D, Λ) graph and H be a (D, d, λ) graph. Then, $G(2) H$ is an $\left(N D, d^{2}, f(\Lambda, \lambda, d)\right)$ graph, where:

$$
f(\Lambda, \lambda) \leqslant \Lambda+\lambda+\lambda^{2}
$$

Graph Representation

- $\operatorname{Rot}(u, i)=(v, j)$, if there exists an edge (u, v) that is labeled i at the vertex u and labeled j at the vertex v
- Think: Compute the Rot mapping of G®H and G(2)H graphs given oracle access to Rot mapping of G and H graphs respectively

